from sage.all import * from sage.misc.banner import require_version if not require_version(10, 5, print_message=True): exit('') from parameters import p, num_orders as num ################################################################ # Underlying theory: # - Ibukiyama, On maximal orders of division quaternion algebras with certain optimal embeddings # - https://ia.cr/2023/106 Lemma 10 from sage.algebras.quatalg.quaternion_algebra import basis_for_quaternion_lattice bfql = lambda els: basis_for_quaternion_lattice(els, reverse=True) Quat1, (i,j,k) = QuaternionAlgebra(-1, -p).objgens() assert Quat1.discriminant() == p # ramifies correctly O0mat = matrix([list(g) for g in [Quat1(1), i, (i+j)/2, (1+k)/2]]) O0 = Quat1.quaternion_order(list(O0mat)) orders = [ (1, identity_matrix(QQ,4), O0mat, i, O0mat, vector((1,0,0,0))) ] q = ZZ(1) while len(orders) < num: q = next_prime(q) if q % 4 != 1: # restricting to q ≡ 1 (mod 4) continue Quatq, (ii,jj,kk) = QuaternionAlgebra(-q, -p).objgens() if Quatq.discriminant() != p: # ramifies incorrectly continue x, y = QuadraticForm(QQ, 2, [1,0,p]).solve(q) gamma = x + j*y assert gamma.reduced_norm() == q ims1 = [Quat1(1), i*gamma, j, k*gamma] assert ims1[1]**2 == -q assert ims1[2]**2 == -p assert ims1[1]*ims1[2] == ims1[3] assert ims1[2]*ims1[1] == -ims1[3] # (1,ii,jj,kk)->ims1 is an isomorphism Quatq->Quat1 iso1q = ~matrix(map(list, ims1)) r = min(map(ZZ, Mod(-p, 4*q).sqrt(all=True))) basq = [ Quatq(1), ii, (1 + jj) / 2, (r + jj) * ii / 2 / q, ] Oq = Quatq.quaternion_order(basq) assert Oq.discriminant() == p # is maximal mat1 = matrix(map(list, basq)) * ~iso1q O1 = Quat1.quaternion_order(list(mat1)) assert O1.discriminant() == p # is maximal assert j in O1 # p-extremal # look for an odd connecting ideal I = O0 * O1 I *= I.norm().denominator() assert I.is_integral() for v in IntegralLattice(I.gram_matrix()).enumerate_short_vectors(): elt = sum(c*g for c,g in zip(v,I.basis())) if ZZ(elt.reduced_norm() / I.norm()) % 2: break I = I * (elt.conjugate() / I.norm()) assert I.is_integral() assert I.norm() % 2 assert I.left_order() == O0 O1_ = I.right_order() assert O1_.unit_ideal() == elt * O1 * ~elt idl1 = matrix(map(list, I.basis())) # q # isomorphism from (-1,-p) algebra to (-q,-p) algebra # basis of maximal order O₁ in (-1,-p) algebra # element sqrt(-q) in O₁ in (-1,-p) algebra # basis of connecting ideal I from O₀ in (-1,-p) algebra # element γ such that I has right order γ O₁ γ^-1 orders.append((q, iso1q, mat1, ims1[1], idl1, vector(elt)))