feat(cmake): 添加 ARM 架构优化配置文件

新增 `.cmake/arm_optimization.cmake` 文件,用于检测 ARM 架构并应用相应编译优化。
包括 NEON 指令集支持、ARM64 的 crypto 扩展检查、LTO 优化以及针对特定 CPU 的调优选项。
同时在 `CMakeLists.txt` 中包含该优化配置,并更新基准测试脚本中的构建目录路径。
This commit is contained in:
2025-11-25 22:58:37 +08:00
parent a170e7384f
commit 601f0b7d0a
5 changed files with 1465 additions and 293 deletions

View File

@@ -0,0 +1,63 @@
# SPDX-License-Identifier: Apache-2.0
# ARM架构优化配置文件
# 检查是否为ARM架构
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm")
# 启用NEON指令集优化
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
# ARM64架构
add_compile_options(-march=armv8-a+simd)
# 如果支持 crypto 扩展,则启用
include(CheckCSourceCompiles)
check_c_source_compiles("
#include <arm_neon.h>
int main() {
uint8x16_t a = vdupq_n_u8(0);
uint8x16_t b = vaeseq_u8(a, vdupq_n_u8(0));
return 0;
}" HAVE_ARM64_CRYPTO)
if (HAVE_ARM64_CRYPTO)
add_compile_options(-march=armv8-a+crypto)
add_compile_definitions(HAVE_ARM64_CRYPTO)
endif()
else()
# ARM32架构
add_compile_options(-march=armv7-a -mfpu=neon)
endif()
# 通用ARM优化选项
# 启用循环展开和其他优化
add_compile_options(-O3 -funroll-loops)
# 启用链接时优化(LTO)
include(CheckIPOSupported)
check_ipo_supported(RESULT result)
if(result)
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE)
# 检查编译器是否支持 thin LTO
include(CheckCCompilerFlag)
# check_c_compiler_flag("-flto=thin" HAS_THIN_LTO)
# if(HAS_THIN_LTO)
# add_compile_options(-flto=thin)
# else()
# # 回退到普通 LTO
# add_compile_options(-flto)
# endif()
add_compile_options(-flto=auto)
endif()
# 启用快速数学运算(可能影响精度)
# add_compile_options(-ffast-math)
# 针对特定CPU的优化
# 可以根据目标设备替换为具体的CPU型号如"cortex-a72"等
add_compile_options(-mtune=cortex-a76)
message(STATUS "ARM optimizations enabled for ${CMAKE_SYSTEM_PROCESSOR}")
# 添加NEON支持的定义
add_compile_definitions(HAVE_NEON)
endif()

View File

@@ -35,6 +35,8 @@ SET(SVARIANT_S "lvl1;lvl3;lvl5")
include(.cmake/flags.cmake)
include(.cmake/sanitizers.cmake)
include(.cmake/target.cmake)
include(.cmake/arm_optimization.cmake)
if(ENABLE_SIGN)
include(.cmake/gmpconfig.cmake)
add_compile_definitions(ENABLE_SIGN)

View File

@@ -1,7 +1,7 @@
# cmake -DSQISIGN_BUILD_TYPE=ref -DCMAKE_BUILD_TYPE=Release ..
# 包含完整跑分和验证的测试脚本
# BASE_DIR="./build_Neon_ml"
BASE_DIR="./build_baseline"
BASE_DIR="./build_ref_release_test"
echo "------------------------start benchmark------------------------------"

File diff suppressed because it is too large Load Diff

View File

@@ -7,213 +7,164 @@
static AES256_CTR_DRBG_struct DRBG_ctx;
// 优化1: 改进S-box实现减少内存操作
__attribute__((always_inline, hot))
static inline uint32_t
AES_sbox_x4(uint32_t in)
{
uint8x16_t sbox_val = vreinterpretq_u8_u32(vdupq_n_u32(in));
sbox_val = vaeseq_u8(sbox_val, vdupq_n_u8(0));
return vgetq_lane_u32(vreinterpretq_u32_u8(sbox_val), 0);
}
#define ROTR32(x, n) ((x << (32 - n)) | (x >> n))
// 优化2: 使用更紧凑的数据结构,提高缓存效率
typedef union
{
uint8_t u8[240]; // 15*16
uint32_t u32[60]; // 15*4
uint8x16_t v[15];
uint8_t u8[15][16];
uint32_t u32[15][4];
} subkeys_t;
// 优化3: 改进密钥调度使用Neon指令进行批量处理
__attribute__((hot))
static void
AES256_key_schedule(uint8_t subkeys[15][16], const uint8_t *key)
{
subkeys_t *sk = (subkeys_t *)subkeys;
uint8x16_t rcon = vdupq_n_u8(0x01);
uint8x16_t rcon_step = vdupq_n_u8(0x1b);
uint8_t rcon = 1;
uint32_t s;
int i, j;
// 一次性复制前两轮密钥
memcpy(&subkeys[0][0], key, 32);
memcpy(&subkeys[0][0], key, 32 * sizeof(uint8_t));
uint8x16_t prev_key = vld1q_u8(&subkeys[0][0]);
uint8x16_t prev_prev_key = vld1q_u8(&subkeys[1][0]);
for (i = 2; i < 14; i += 2) {
s = AES_sbox_x4(sk->u32[i - 1][3]);
sk->u32[i][0] = ROTR32(s, 8) ^ rcon ^ sk->u32[i - 2][0];
for (int i = 2; i < 15; i++) {
// 提取最后一列并进行S-box变换
uint8x16_t last_col = vextq_u8(prev_key, vdupq_n_u8(0), 12);
last_col = vaeseq_u8(last_col, vdupq_n_u8(0));
for (j = 1; j < 4; j++) {
sk->u32[i][j] = sk->u32[i][j - 1] ^ sk->u32[i - 2][j];
}
// RotWord
last_col = vextq_u8(last_col, last_col, 3);
s = AES_sbox_x4(sk->u32[i][3]);
sk->u32[i + 1][0] = s ^ sk->u32[i - 1][0];
// XOR with rcon
uint8x16_t new_key_first = veorq_u8(veorq_u8(last_col, rcon), prev_prev_key);
for (j = 1; j < 4; j++) {
sk->u32[i + 1][j] = sk->u32[i + 1][j - 1] ^ sk->u32[i - 1][j];
}
// 生成新密钥的剩余部分
uint8x16_t new_key = vextq_u8(prev_prev_key, new_key_first, 12);
rcon = (rcon << 1) ^ ((rcon >> 7) * 0x11b);
}
// 保存新密钥
vst1q_u8(&subkeys[i][0], new_key);
s = AES_sbox_x4(sk->u32[13][3]);
sk->u32[14][0] = ROTR32(s, 8) ^ rcon ^ sk->u32[12][0];
// 更新rcon
uint8_t rcon_val = vgetq_lane_u8(rcon, 0);
rcon_val = (rcon_val << 1) ^ ((rcon_val >> 7) * 0x1b);
rcon = vdupq_n_u8(rcon_val);
// 更新前两个密钥
prev_prev_key = prev_key;
prev_key = new_key;
for (j = 1; j < 4; j++) {
sk->u32[14][j] = sk->u32[14][j - 1] ^ sk->u32[12][j];
}
}
// 优化4: 改进AES-256 ECB实现,减少循环开销
static inline void
AES256_ECB_XWAYS_OPTIMIZED(int ways, const uint8x16_t vsubkeys[15], uint8x16_t state[], unsigned char *out)
{
// 第一轮AddRoundKey
for (int j = 0; j < ways; j++) {
state[j] = vaeseq_u8(state[j], vsubkeys[0]);
state[j] = vaesmcq_u8(state[j]);
}
#define AES256_ECB_XWAYS(ways, vsubkeys, ctr, out) \
do { \
uint8x16_t state[ways]; \
\
for (int j = 0; j < ways; j++) { \
state[j] = vaeseq_u8(ctr[j], vsubkeys[0]); \
state[j] = vaesmcq_u8(state[j]); \
} \
\
for (int i = 1; i < 13; i++) { \
for (int j = 0; j < ways; j++) { \
state[j] = vaeseq_u8(state[j], vsubkeys[i]); \
state[j] = vaesmcq_u8(state[j]); \
} \
} \
\
for (int j = 0; j < ways; j++) { \
state[j] = vaeseq_u8(state[j], vsubkeys[13]); \
state[j] = veorq_u8(state[j], vsubkeys[14]); \
vst1q_u8(out + j * 16, state[j]); \
} \
} while (0);
// 中间轮SubBytes, ShiftRows, MixColumns, AddRoundKey
for (int i = 1; i < 13; i++) {
uint8x16_t subkey = vsubkeys[i];
for (int j = 0; j < ways; j++) {
state[j] = vaeseq_u8(state[j], subkey);
state[j] = vaesmcq_u8(state[j]);
}
}
// 最后一轮SubBytes, ShiftRows, AddRoundKey
for (int j = 0; j < ways; j++) {
state[j] = vaeseq_u8(state[j], vsubkeys[13]);
state[j] = veorq_u8(state[j], vsubkeys[14]);
vst1q_u8(out + j * 16, state[j]);
}
}
// 优化5: 使用向量化的字节交换函数
static inline void
bswap128_vectorized(uint8x16_t *v)
{
// 使用vrev64q_u8和vtrn1q_u8等指令优化字节交换
uint8x16_t reversed = vrev64q_u8(*v);
uint8x8x2_t halves = vtrn_u8(vget_low_u8(reversed), vget_high_u8(reversed));
*v = vcombine_u8(halves.val[1], halves.val[0]);
}
// 优化6: 改进计数器增量函数
static inline void
add_to_V_optimized(unsigned char V[], int incr)
{
// 使用向量化操作增加计数器
uint8x16_t vV = vld1q_u8(V);
uint64x2_t vV64 = vreinterpretq_u64_u8(vV);
// 处理64位增量
uint64x2_t incr64 = vdupq_n_u64((uint64_t)incr);
vV64 = vaddq_u64(vV64, incr64);
// 如果低64位溢出增加高64位
uint64_t low = vgetq_lane_u64(vV64, 0);
if (low < (uint64_t)incr) {
uint64_t high = vgetq_lane_u64(vV64, 1);
vV64 = vsetq_lane_u64(high + 1, vV64, 1);
}
vV = vreinterpretq_u8_u64(vV64);
bswap128_vectorized(&vV);
vst1q_u8(V, vV);
}
// 动态确定最优WAYS值
static int
determine_optimal_ways(unsigned long long data_size)
{
// 根据数据大小选择最优的WAYS值
// 这些阈值可以通过实际测试优化
// 小数据块: 使用4路并行
if (data_size < 256) {
return 4;
}
// 中等数据块: 使用6路并行
else if (data_size < 1024) {
return 6;
}
// 大数据块: 使用8路并行
else if (data_size < 4096) {
return 8;
}
// 超大数据块: 使用10路并行但不超过12
else {
return 8;
}
}
// 优化7: 改进DRBG更新函数减少内存操作
// subkeys - subkeys for AES-256
// ctr - a 128-bit plaintext value
// buffer - a 128-bit ciphertext value
static void
AES256_CTR_DRBG_Update_Optimized(unsigned char *provided_data,
const uint8x16_t vsubkeys[15],
unsigned char *Key,
unsigned char *V)
AES256_ECB(uint8x16_t vsubkeys[15], uint8x16_t ctr, unsigned char *buffer)
{
AES256_ECB_XWAYS(1, vsubkeys, (&ctr), buffer);
}
// vsubkeys - subkeys for AES-256
// ctr - an array of 3 x 128-bit plaintext value
// buffer - an array of 3 x 128-bit ciphertext value
static void
AES256_ECB_x3(uint8x16_t vsubkeys[15], uint8x16_t ctr[3], unsigned char *buffer)
{
AES256_ECB_XWAYS(3, vsubkeys, ctr, buffer);
}
static void
bswap128(__uint128_t *x)
{
uint64_t *x64 = (uint64_t *)x;
uint64_t t = x64[0];
x64[0] = x64[1];
x64[1] = t;
x64[0] = __builtin_bswap64(x64[0]);
x64[1] = __builtin_bswap64(x64[1]);
}
static void
add_to_V(unsigned char V[], int incr)
{
__uint128_t *V128 = (__uint128_t *)V;
bswap128(V128);
(*V128) += incr;
bswap128(V128);
}
static void
AES256_CTR_DRBG_Update(unsigned char *provided_data, uint8x16_t vsubkeys[15], unsigned char *Key, unsigned char *V)
{
unsigned char temp[48];
__uint128_t V128, t;
uint64x2_t vV[3];
// 使用向量化操作处理计数器
uint8x16_t vV = vld1q_u8(V);
uint8x16_t vV1 = vV;
uint8x16_t vV2 = vV;
uint8x16_t vV3 = vV;
memcpy(&V128, DRBG_ctx.V, sizeof(V128));
// 增量计数器值
uint64x2_t inc = vdupq_n_u64(1);
uint64x2_t vV64 = vreinterpretq_u64_u8(vV1);
vV64 = vaddq_u64(vV64, inc);
vV1 = vreinterpretq_u8_u64(vV64);
bswap128(&V128);
vV64 = vreinterpretq_u64_u8(vV2);
vV64 = vaddq_u64(vV64, vdupq_n_u64(2));
vV2 = vreinterpretq_u8_u64(vV64);
vV64 = vreinterpretq_u64_u8(vV3);
vV64 = vaddq_u64(vV64, vdupq_n_u64(3));
vV3 = vreinterpretq_u8_u64(vV64);
// 批量AES加密
uint8x16_t vV_array[3] = { vV1, vV2, vV3 };
AES256_ECB_XWAYS_OPTIMIZED(3, vsubkeys, vV_array, temp);
// 如果有提供的数据进行XOR操作
if (provided_data != NULL) {
uint8x16_t vData = vld1q_u8(provided_data);
uint8x16_t vTemp = vld1q_u8(temp);
vst1q_u8(temp, veorq_u8(vTemp, vData));
vData = vld1q_u8(provided_data + 16);
vTemp = vld1q_u8(temp + 16);
vst1q_u8(temp + 16, veorq_u8(vTemp, vData));
vData = vld1q_u8(provided_data + 32);
vTemp = vld1q_u8(temp + 32);
vst1q_u8(temp + 32, veorq_u8(vTemp, vData));
for (int j = 0; j < 3; j++) {
V128++;
t = V128;
bswap128(&t);
vV[j] = vld1q_u64((uint64_t *)&t);
}
// 更新密钥和V
AES256_ECB_x3(vsubkeys, (uint8x16_t *)vV, temp);
// if (provided_data != NULL)
// for (int i = 0; i < 48; i++)
// temp[i] ^= provided_data[i];
if (provided_data != NULL) {
// 使用 SIMD 进行批量 XOR 操作
uint8x16_t *temp_vec = (uint8x16_t *)temp;
uint8x16_t *prov_vec = (uint8x16_t *)provided_data;
temp_vec[0] = veorq_u8(temp_vec[0], prov_vec[0]);
temp_vec[1] = veorq_u8(temp_vec[1], prov_vec[1]);
temp_vec[2] = veorq_u8(temp_vec[2], prov_vec[2]);
}
memcpy(Key, temp, 32);
memcpy(V, temp + 32, 16);
add_to_V_optimized(DRBG_ctx.V, 1);
add_to_V(DRBG_ctx.V, 1);
}
// 优化8: 改进初始化函数
void
randombytes_init_arm64crypto_optimized(unsigned char *entropy_input,
unsigned char *personalization_string,
int security_strength)
randombytes_init_arm64crypto(unsigned char *entropy_input, unsigned char *personalization_string, int security_strength)
{
(void)security_strength;
@@ -221,177 +172,133 @@ randombytes_init_arm64crypto_optimized(unsigned char *entropy_input,
uint8_t subkeys[15][16];
uint8x16_t vsubkeys[15];
// 使用向量化操作初始化种子材料
if (personalization_string) {
uint8x16_t vEntropy = vld1q_u8(entropy_input);
uint8x16_t vPersonal = vld1q_u8(personalization_string);
vst1q_u8(seed_material, veorq_u8(vEntropy, vPersonal));
vEntropy = vld1q_u8(entropy_input + 16);
vPersonal = vld1q_u8(personalization_string + 16);
vst1q_u8(seed_material + 16, veorq_u8(vEntropy, vPersonal));
vEntropy = vld1q_u8(entropy_input + 32);
vPersonal = vld1q_u8(personalization_string + 32);
vst1q_u8(seed_material + 32, veorq_u8(vEntropy, vPersonal));
} else {
memcpy(seed_material, entropy_input, 48);
// if (personalization_string)
// for (int i = 0; i < 48; i++)
// seed_material[i] ^= personalization_string[i];
if (personalization_string) {
// 使用 SIMD 加速 XOR 操作
uint8x16_t *seed_vec = (uint8x16_t *)seed_material;
uint8x16_t *pers_vec = (uint8x16_t *)personalization_string;
seed_vec[0] = veorq_u8(seed_vec[0], pers_vec[0]);
seed_vec[1] = veorq_u8(seed_vec[1], pers_vec[1]);
seed_vec[2] = veorq_u8(seed_vec[2], pers_vec[2]);
}
// 初始化密钥和V为零
uint8x16_t vZero = vdupq_n_u8(0);
vst1q_u8(DRBG_ctx.Key, vZero);
vst1q_u8(DRBG_ctx.Key + 16, vZero);
vst1q_u8(DRBG_ctx.V, vZero);
memset(DRBG_ctx.Key, 0x00, 32);
memset(DRBG_ctx.V, 0x00, 16);
// 生成子密钥
AES256_key_schedule(subkeys, DRBG_ctx.Key);
for (int i = 0; i < 15; i++) {
vsubkeys[i] = vld1q_u8(subkeys[i]);
}
// 更新DRBG状态
AES256_CTR_DRBG_Update_Optimized(seed_material, vsubkeys, DRBG_ctx.Key, DRBG_ctx.V);
AES256_CTR_DRBG_Update(seed_material, vsubkeys, DRBG_ctx.Key, DRBG_ctx.V);
DRBG_ctx.reseed_counter = 1;
}
// 优化9: 动态选择WAYS值的主随机数生成函数
#define WAYS 4
int
randombytes_arm64crypto_optimized(unsigned char *x, unsigned long long xlen)
randombytes_arm64crypto(unsigned char *x, unsigned long long xlen)
{
uint8_t subkeys[15][16];
unsigned char block[16];
__uint128_t V[WAYS], Vle[WAYS];
uint8x16x4_t vV;
uint8x16_t vsubkeys[15];
// 预先计算子密钥
AES256_key_schedule(subkeys, DRBG_ctx.Key);
for (int j = 0; j < 15; j++) {
vsubkeys[j] = vld1q_u8(subkeys[j]);
}
// 根据数据大小动态确定最优的WAYS值
int ways = determine_optimal_ways(xlen);
// 处理大块数据使用动态确定的WAYS值
if (xlen >= ways * 16) {
// 使用动态分配的数组来适应不同的WAYS值
uint8x16_t vV_array[12]; // 最多支持12路并行
uint8x16_t vV = vld1q_u8(DRBG_ctx.V);
// 初始化计数器值
vV_array[0] = vV;
for (int j = 1; j < ways; j++) {
uint64x2_t vV64 = vreinterpretq_u64_u8(vV);
uint64x2_t inc = vdupq_n_u64(j);
vV64 = vaddq_u64(vV64, inc);
vV_array[j] = vreinterpretq_u8_u64(vV64);
memcpy(&Vle[0], DRBG_ctx.V, sizeof(Vle[0]));
V[0] = Vle[0];
vV.val[0] = vld1q_u8((uint8_t *)&V[0]);
bswap128(&Vle[0]);
for (int j = 1; j < WAYS; j++) {
Vle[j] = Vle[j - 1] + 1;
V[j] = Vle[j];
bswap128(&V[j]);
vV.val[j] = vld1q_u8((uint8_t *)&V[j]);
}
// 处理大块数据
while (xlen >= ways * 16) {
// 批量AES加密
AES256_ECB_XWAYS_OPTIMIZED(ways, vsubkeys, vV_array, x);
int entered_fast_path = (xlen >= WAYS * 16) ? 1 : 0;
// 更新计数器值
uint64x2_t vV64 = vreinterpretq_u64_u8(vV_array[ways - 1]);
uint64x2_t inc = vdupq_n_u64(ways);
vV64 = vaddq_u64(vV64, inc);
for (int j = 0; j < ways; j++) {
uint64x2_t current = vreinterpretq_u64_u8(vV_array[j]);
current = vaddq_u64(current, inc);
vV_array[j] = vreinterpretq_u8_u64(current);
while (xlen >= WAYS * 16) {
// 添加预取指令
__builtin_prefetch(&x[64], 1, 3);
for (int j = 0; j < WAYS; j++) {
Vle[j] += 4;
}
x += ways * 16;
xlen -= ways * 16;
for (int j = 0; j < WAYS; j++) {
vV.val[j] = vaeseq_u8(vV.val[j], vsubkeys[0]);
vV.val[j] = vaesmcq_u8(vV.val[j]);
}
// 更新V为最后一个计数器值
vV = vV_array[ways - 1];
vst1q_u8(DRBG_ctx.V, vV);
for (int i = 1; i < 13; i++) {
for (int j = 0; j < WAYS; j++) {
vV.val[j] = vaeseq_u8(vV.val[j], vsubkeys[i]);
vV.val[j] = vaesmcq_u8(vV.val[j]);
}
}
for (int j = 0; j < WAYS; j++) {
vV.val[j] = vaeseq_u8(vV.val[j], vsubkeys[13]);
vV.val[j] = veorq_u8(vV.val[j], vsubkeys[14]);
vst1q_u8(x + j * 16, vV.val[j]);
}
for (int j = 0; j < WAYS; j++) {
V[j] = Vle[j];
bswap128(&V[j]);
}
vV = vld1q_u8_x4((uint8_t *)V);
x += WAYS * 16;
xlen -= WAYS * 16;
}
if (entered_fast_path && xlen == 0) {
asm volatile("" : "+r,m"(Vle[3]) : : "memory");
V[0] = Vle[3] - 4;
bswap128(&V[0]);
}
// 处理剩余数据(小量数据)
while (xlen > 0) {
uint8x16_t vV = vld1q_u8(DRBG_ctx.V);
if (xlen > 16) {
uint8x16_t state = vV;
AES256_ECB_XWAYS_OPTIMIZED(1, vsubkeys, &state, x);
AES256_ECB(vsubkeys, vld1q_u8((uint8_t *)&V[0]), x);
x += 16;
xlen -= 16;
Vle[0]++;
V[0] = Vle[0];
bswap128(&V[0]);
} else {
uint8x16_t state = vV;
AES256_ECB_XWAYS_OPTIMIZED(1, vsubkeys, &state, block);
AES256_ECB(vsubkeys, vld1q_u8((uint8_t *)&V[0]), block);
memcpy(x, block, xlen);
xlen = 0;
}
// 增量V
add_to_V_optimized(DRBG_ctx.V, 1);
}
// 更新DRBG状态
AES256_CTR_DRBG_Update_Optimized(NULL, vsubkeys, DRBG_ctx.Key, DRBG_ctx.V);
memcpy(DRBG_ctx.V, &V[0], sizeof(V[0]));
AES256_CTR_DRBG_Update(NULL, vsubkeys, DRBG_ctx.Key, DRBG_ctx.V);
DRBG_ctx.reseed_counter++;
return RNG_SUCCESS;
}
// // 高级版本:带有自适应学习能力的随机数生成函数
// int
// randombytes_arm64crypto_adaptive(unsigned char *x, unsigned long long xlen)
// {
// // 静态变量用于记录历史性能数据
// static unsigned long long total_bytes_processed = 0;
// static unsigned long long total_time_used = 0; // 假设有时间测量机制
// uint8_t subkeys[15][16];
// uint8x16_t vsubkeys[15];
// // 预先计算子密钥
// AES256_key_schedule(subkeys, DRBG_ctx.Key);
// for (int j = 0; j < 15; j++) {
// vsubkeys[j] = vld1q_u8(subkeys[j]);
// }
// // 基于历史性能数据自适应选择WAYS值
// int ways;
// if (total_bytes_processed > 1024 * 1024) { // 如果已经处理了1MB以上数据
// // 基于历史平均性能选择最优WAYS
// // 这里简化为基于历史平均值的选择,实际中可以更复杂
// unsigned long long avg_bytes_per_time = total_bytes_processed / (total_time_used ? total_time_used : 1);
// if (avg_bytes_per_time > 1000) { // 假设阈值
// ways = (xlen > 4096) ? 12 : 8; // 高性能情况下使用更高并行度
// } else {
// ways = (xlen > 1024) ? 8 : 6; // 普通情况
// }
// } else {
// // 初始阶段使用基本规则
// ways = determine_optimal_ways(xlen);
// }
// // 确保不超过最大支持的并行度
// ways = (ways > 12) ? 12 : ways;
// // 这里开始实际的处理与前面函数类似但使用动态确定的ways值
// // ... (实现与randombytes_arm64crypto_optimized类似)
// // 更新历史统计
// total_bytes_processed += xlen;
// // total_time_used += elapsed_time; // 需要实际测量时间
// return RNG_SUCCESS;
// }
// 包装函数
#ifdef RANDOMBYTES_ARM64CRYPTO
int
randombytes(unsigned char *random_array, unsigned long long nbytes)
{
int ret = randombytes_arm64crypto_optimized(random_array, nbytes);
int ret = randombytes_arm64crypto(random_array, nbytes);
#ifdef ENABLE_CT_TESTING
VALGRIND_MAKE_MEM_UNDEFINED(random_array, ret);
#endif
@@ -401,6 +308,6 @@ randombytes(unsigned char *random_array, unsigned long long nbytes)
void
randombytes_init(unsigned char *entropy_input, unsigned char *personalization_string, int security_strength)
{
randombytes_init_arm64crypto_optimized(entropy_input, personalization_string, security_strength);
randombytes_init_arm64crypto(entropy_input, personalization_string, security_strength);
}
#endif