89 lines
2.8 KiB
Python
89 lines
2.8 KiB
Python
|
|
from sage.all import *
|
|||
|
|
|
|||
|
|
from sage.misc.banner import require_version
|
|||
|
|
if not require_version(10, 5, print_message=True):
|
|||
|
|
exit('')
|
|||
|
|
|
|||
|
|
from parameters import p, num_orders as num
|
|||
|
|
|
|||
|
|
################################################################
|
|||
|
|
|
|||
|
|
# Underlying theory:
|
|||
|
|
# - Ibukiyama, On maximal orders of division quaternion algebras with certain optimal embeddings
|
|||
|
|
# - https://ia.cr/2023/106 Lemma 10
|
|||
|
|
|
|||
|
|
from sage.algebras.quatalg.quaternion_algebra import basis_for_quaternion_lattice
|
|||
|
|
bfql = lambda els: basis_for_quaternion_lattice(els, reverse=True)
|
|||
|
|
|
|||
|
|
Quat1, (i,j,k) = QuaternionAlgebra(-1, -p).objgens()
|
|||
|
|
assert Quat1.discriminant() == p # ramifies correctly
|
|||
|
|
|
|||
|
|
O0mat = matrix([list(g) for g in [Quat1(1), i, (i+j)/2, (1+k)/2]])
|
|||
|
|
O0 = Quat1.quaternion_order(list(O0mat))
|
|||
|
|
|
|||
|
|
orders = [ (1, identity_matrix(QQ,4), O0mat, i, O0mat, vector((1,0,0,0))) ]
|
|||
|
|
|
|||
|
|
q = ZZ(1)
|
|||
|
|
while len(orders) < num:
|
|||
|
|
q = next_prime(q)
|
|||
|
|
if q % 4 != 1: # restricting to q ≡ 1 (mod 4)
|
|||
|
|
continue
|
|||
|
|
|
|||
|
|
Quatq, (ii,jj,kk) = QuaternionAlgebra(-q, -p).objgens()
|
|||
|
|
if Quatq.discriminant() != p: # ramifies incorrectly
|
|||
|
|
continue
|
|||
|
|
|
|||
|
|
x, y = QuadraticForm(QQ, 2, [1,0,p]).solve(q)
|
|||
|
|
gamma = x + j*y
|
|||
|
|
assert gamma.reduced_norm() == q
|
|||
|
|
ims1 = [Quat1(1), i*gamma, j, k*gamma]
|
|||
|
|
assert ims1[1]**2 == -q
|
|||
|
|
assert ims1[2]**2 == -p
|
|||
|
|
assert ims1[1]*ims1[2] == ims1[3]
|
|||
|
|
assert ims1[2]*ims1[1] == -ims1[3]
|
|||
|
|
# (1,ii,jj,kk)->ims1 is an isomorphism Quatq->Quat1
|
|||
|
|
iso1q = ~matrix(map(list, ims1))
|
|||
|
|
|
|||
|
|
r = min(map(ZZ, Mod(-p, 4*q).sqrt(all=True)))
|
|||
|
|
|
|||
|
|
basq = [
|
|||
|
|
Quatq(1),
|
|||
|
|
ii,
|
|||
|
|
(1 + jj) / 2,
|
|||
|
|
(r + jj) * ii / 2 / q,
|
|||
|
|
]
|
|||
|
|
|
|||
|
|
Oq = Quatq.quaternion_order(basq)
|
|||
|
|
assert Oq.discriminant() == p # is maximal
|
|||
|
|
|
|||
|
|
mat1 = matrix(map(list, basq)) * ~iso1q
|
|||
|
|
O1 = Quat1.quaternion_order(list(mat1))
|
|||
|
|
assert O1.discriminant() == p # is maximal
|
|||
|
|
assert j in O1 # p-extremal
|
|||
|
|
|
|||
|
|
# look for an odd connecting ideal
|
|||
|
|
I = O0 * O1
|
|||
|
|
I *= I.norm().denominator()
|
|||
|
|
assert I.is_integral()
|
|||
|
|
for v in IntegralLattice(I.gram_matrix()).enumerate_short_vectors():
|
|||
|
|
elt = sum(c*g for c,g in zip(v,I.basis()))
|
|||
|
|
if ZZ(elt.reduced_norm() / I.norm()) % 2:
|
|||
|
|
break
|
|||
|
|
I = I * (elt.conjugate() / I.norm())
|
|||
|
|
assert I.is_integral()
|
|||
|
|
assert I.norm() % 2
|
|||
|
|
assert I.left_order() == O0
|
|||
|
|
|
|||
|
|
O1_ = I.right_order()
|
|||
|
|
assert O1_.unit_ideal() == elt * O1 * ~elt
|
|||
|
|
idl1 = matrix(map(list, I.basis()))
|
|||
|
|
|
|||
|
|
# q
|
|||
|
|
# isomorphism from (-1,-p) algebra to (-q,-p) algebra
|
|||
|
|
# basis of maximal order O₁ in (-1,-p) algebra
|
|||
|
|
# element sqrt(-q) in O₁ in (-1,-p) algebra
|
|||
|
|
# basis of connecting ideal I from O₀ in (-1,-p) algebra
|
|||
|
|
# element γ such that I has right order γ O₁ γ^-1
|
|||
|
|
orders.append((q, iso1q, mat1, ims1[1], idl1, vector(elt)))
|
|||
|
|
|