initial version of SQIsign

Co-authored-by: Jorge Chavez-Saab <jorgechavezsaab@gmail.com>
Co-authored-by: Maria Corte-Real Santos <36373796+mariascrs@users.noreply.github.com>
Co-authored-by: Luca De Feo <github@defeo.lu>
Co-authored-by: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com>
Co-authored-by: Basil Hess <bhe@zurich.ibm.com>
Co-authored-by: Antonin Leroux <18654258+tonioecto@users.noreply.github.com>
Co-authored-by: Patrick Longa <plonga@microsoft.com>
Co-authored-by: Lorenz Panny <lorenz@yx7.cc>
Co-authored-by: Francisco Rodríguez-Henríquez <francisco.rodriguez@tii.ae>
Co-authored-by: Sina Schaeffler <108983332+syndrakon@users.noreply.github.com>
Co-authored-by: Benjamin Wesolowski <19474926+Calodeon@users.noreply.github.com>
This commit is contained in:
SQIsign team
2023-06-01 00:00:00 +00:00
committed by Lorenz Panny
commit 28ff420dd0
285 changed files with 70301 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
get_filename_component(CCSD_NAME ${CMAKE_CURRENT_SOURCE_DIR} NAME)
string(TOUPPER ${CCSD_NAME} CCSD_NAME_UPPER)
include(${SELECT_SQISIGN_VARIANT})

View File

@@ -0,0 +1,26 @@
set(SOURCE_FILES_COMMON_SYS
randombytes_system.c
aes_c.c
fips202.c
mem.c
)
add_library(sqisign_common_sys ${SOURCE_FILES_COMMON_SYS})
target_include_directories(sqisign_common_sys PRIVATE include ../../include)
target_compile_options(sqisign_common_sys PUBLIC ${C_OPT_FLAGS})
set(SOURCE_FILES_COMMON_TEST
randombytes_ctrdrbg.c
aes_c.c
fips202.c
mem.c
)
add_library(sqisign_common_test ${SOURCE_FILES_COMMON_TEST})
target_include_directories(sqisign_common_test PRIVATE include ../include)
target_compile_options(sqisign_common_test PUBLIC ${C_OPT_FLAGS})
if (ENABLE_CT_TESTING)
target_compile_definitions(sqisign_common_sys PUBLIC ENABLE_CT_TESTING)
target_compile_definitions(sqisign_common_test PUBLIC ENABLE_CT_TESTING)
endif()

740
src/common/generic/aes_c.c Normal file
View File

@@ -0,0 +1,740 @@
// SPDX-License-Identifier: MIT and Apache-2.0
/*
* AES implementation based on code from PQClean,
* which is in turn based on BearSSL (https://bearssl.org/)
* by Thomas Pornin.
*
*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#define AES128_KEYBYTES 16
#define AES192_KEYBYTES 24
#define AES256_KEYBYTES 32
#define AESCTR_NONCEBYTES 12
#define AES_BLOCKBYTES 16
// We've put these states on the heap to make sure ctx_release is used.
#define PQC_AES128_STATESIZE 88
typedef struct {
uint64_t *sk_exp;
} aes128ctx;
#define PQC_AES192_STATESIZE 104
typedef struct {
uint64_t *sk_exp;
} aes192ctx;
#define PQC_AES256_STATESIZE 120
typedef struct {
uint64_t *sk_exp;
} aes256ctx;
/** Initializes the context **/
void aes128_ecb_keyexp(aes128ctx *r, const unsigned char *key);
void aes128_ctr_keyexp(aes128ctx *r, const unsigned char *key);
void aes128_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const aes128ctx *ctx);
void aes128_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const aes128ctx *ctx);
/** Frees the context **/
void aes128_ctx_release(aes128ctx *r);
/** Initializes the context **/
void aes192_ecb_keyexp(aes192ctx *r, const unsigned char *key);
void aes192_ctr_keyexp(aes192ctx *r, const unsigned char *key);
void aes192_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const aes192ctx *ctx);
void aes192_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const aes192ctx *ctx);
void aes192_ctx_release(aes192ctx *r);
/** Initializes the context **/
void aes256_ecb_keyexp(aes256ctx *r, const unsigned char *key);
void aes256_ctr_keyexp(aes256ctx *r, const unsigned char *key);
void aes256_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const aes256ctx *ctx);
void aes256_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const aes256ctx *ctx);
/** Frees the context **/
void aes256_ctx_release(aes256ctx *r);
static inline uint32_t br_dec32le(const unsigned char *src) {
return (uint32_t)src[0]
| ((uint32_t)src[1] << 8)
| ((uint32_t)src[2] << 16)
| ((uint32_t)src[3] << 24);
}
static void br_range_dec32le(uint32_t *v, size_t num, const unsigned char *src) {
while (num-- > 0) {
*v ++ = br_dec32le(src);
src += 4;
}
}
static inline uint32_t br_swap32(uint32_t x) {
x = ((x & (uint32_t)0x00FF00FF) << 8)
| ((x >> 8) & (uint32_t)0x00FF00FF);
return (x << 16) | (x >> 16);
}
static inline void br_enc32le(unsigned char *dst, uint32_t x) {
dst[0] = (unsigned char)x;
dst[1] = (unsigned char)(x >> 8);
dst[2] = (unsigned char)(x >> 16);
dst[3] = (unsigned char)(x >> 24);
}
static void br_range_enc32le(unsigned char *dst, const uint32_t *v, size_t num) {
while (num-- > 0) {
br_enc32le(dst, *v ++);
dst += 4;
}
}
static void br_aes_ct64_bitslice_Sbox(uint64_t *q) {
/*
* This S-box implementation is a straightforward translation of
* the circuit described by Boyar and Peralta in "A new
* combinational logic minimization technique with applications
* to cryptology" (https://eprint.iacr.org/2009/191.pdf).
*
* Note that variables x* (input) and s* (output) are numbered
* in "reverse" order (x0 is the high bit, x7 is the low bit).
*/
uint64_t x0, x1, x2, x3, x4, x5, x6, x7;
uint64_t y1, y2, y3, y4, y5, y6, y7, y8, y9;
uint64_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
uint64_t y20, y21;
uint64_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
uint64_t z10, z11, z12, z13, z14, z15, z16, z17;
uint64_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
uint64_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
uint64_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
uint64_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
uint64_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
uint64_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
uint64_t t60, t61, t62, t63, t64, t65, t66, t67;
uint64_t s0, s1, s2, s3, s4, s5, s6, s7;
x0 = q[7];
x1 = q[6];
x2 = q[5];
x3 = q[4];
x4 = q[3];
x5 = q[2];
x6 = q[1];
x7 = q[0];
/*
* Top linear transformation.
*/
y14 = x3 ^ x5;
y13 = x0 ^ x6;
y9 = x0 ^ x3;
y8 = x0 ^ x5;
t0 = x1 ^ x2;
y1 = t0 ^ x7;
y4 = y1 ^ x3;
y12 = y13 ^ y14;
y2 = y1 ^ x0;
y5 = y1 ^ x6;
y3 = y5 ^ y8;
t1 = x4 ^ y12;
y15 = t1 ^ x5;
y20 = t1 ^ x1;
y6 = y15 ^ x7;
y10 = y15 ^ t0;
y11 = y20 ^ y9;
y7 = x7 ^ y11;
y17 = y10 ^ y11;
y19 = y10 ^ y8;
y16 = t0 ^ y11;
y21 = y13 ^ y16;
y18 = x0 ^ y16;
/*
* Non-linear section.
*/
t2 = y12 & y15;
t3 = y3 & y6;
t4 = t3 ^ t2;
t5 = y4 & x7;
t6 = t5 ^ t2;
t7 = y13 & y16;
t8 = y5 & y1;
t9 = t8 ^ t7;
t10 = y2 & y7;
t11 = t10 ^ t7;
t12 = y9 & y11;
t13 = y14 & y17;
t14 = t13 ^ t12;
t15 = y8 & y10;
t16 = t15 ^ t12;
t17 = t4 ^ t14;
t18 = t6 ^ t16;
t19 = t9 ^ t14;
t20 = t11 ^ t16;
t21 = t17 ^ y20;
t22 = t18 ^ y19;
t23 = t19 ^ y21;
t24 = t20 ^ y18;
t25 = t21 ^ t22;
t26 = t21 & t23;
t27 = t24 ^ t26;
t28 = t25 & t27;
t29 = t28 ^ t22;
t30 = t23 ^ t24;
t31 = t22 ^ t26;
t32 = t31 & t30;
t33 = t32 ^ t24;
t34 = t23 ^ t33;
t35 = t27 ^ t33;
t36 = t24 & t35;
t37 = t36 ^ t34;
t38 = t27 ^ t36;
t39 = t29 & t38;
t40 = t25 ^ t39;
t41 = t40 ^ t37;
t42 = t29 ^ t33;
t43 = t29 ^ t40;
t44 = t33 ^ t37;
t45 = t42 ^ t41;
z0 = t44 & y15;
z1 = t37 & y6;
z2 = t33 & x7;
z3 = t43 & y16;
z4 = t40 & y1;
z5 = t29 & y7;
z6 = t42 & y11;
z7 = t45 & y17;
z8 = t41 & y10;
z9 = t44 & y12;
z10 = t37 & y3;
z11 = t33 & y4;
z12 = t43 & y13;
z13 = t40 & y5;
z14 = t29 & y2;
z15 = t42 & y9;
z16 = t45 & y14;
z17 = t41 & y8;
/*
* Bottom linear transformation.
*/
t46 = z15 ^ z16;
t47 = z10 ^ z11;
t48 = z5 ^ z13;
t49 = z9 ^ z10;
t50 = z2 ^ z12;
t51 = z2 ^ z5;
t52 = z7 ^ z8;
t53 = z0 ^ z3;
t54 = z6 ^ z7;
t55 = z16 ^ z17;
t56 = z12 ^ t48;
t57 = t50 ^ t53;
t58 = z4 ^ t46;
t59 = z3 ^ t54;
t60 = t46 ^ t57;
t61 = z14 ^ t57;
t62 = t52 ^ t58;
t63 = t49 ^ t58;
t64 = z4 ^ t59;
t65 = t61 ^ t62;
t66 = z1 ^ t63;
s0 = t59 ^ t63;
s6 = t56 ^ ~t62;
s7 = t48 ^ ~t60;
t67 = t64 ^ t65;
s3 = t53 ^ t66;
s4 = t51 ^ t66;
s5 = t47 ^ t65;
s1 = t64 ^ ~s3;
s2 = t55 ^ ~t67;
q[7] = s0;
q[6] = s1;
q[5] = s2;
q[4] = s3;
q[3] = s4;
q[2] = s5;
q[1] = s6;
q[0] = s7;
}
static void br_aes_ct64_ortho(uint64_t *q) {
#define SWAPN(cl, ch, s, x, y) do { \
uint64_t a, b; \
a = (x); \
b = (y); \
(x) = (a & (uint64_t)(cl)) | ((b & (uint64_t)(cl)) << (s)); \
(y) = ((a & (uint64_t)(ch)) >> (s)) | (b & (uint64_t)(ch)); \
} while (0)
#define SWAP2(x, y) SWAPN(0x5555555555555555, 0xAAAAAAAAAAAAAAAA, 1, x, y)
#define SWAP4(x, y) SWAPN(0x3333333333333333, 0xCCCCCCCCCCCCCCCC, 2, x, y)
#define SWAP8(x, y) SWAPN(0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0, 4, x, y)
SWAP2(q[0], q[1]);
SWAP2(q[2], q[3]);
SWAP2(q[4], q[5]);
SWAP2(q[6], q[7]);
SWAP4(q[0], q[2]);
SWAP4(q[1], q[3]);
SWAP4(q[4], q[6]);
SWAP4(q[5], q[7]);
SWAP8(q[0], q[4]);
SWAP8(q[1], q[5]);
SWAP8(q[2], q[6]);
SWAP8(q[3], q[7]);
}
static void br_aes_ct64_interleave_in(uint64_t *q0, uint64_t *q1, const uint32_t *w) {
uint64_t x0, x1, x2, x3;
x0 = w[0];
x1 = w[1];
x2 = w[2];
x3 = w[3];
x0 |= (x0 << 16);
x1 |= (x1 << 16);
x2 |= (x2 << 16);
x3 |= (x3 << 16);
x0 &= (uint64_t)0x0000FFFF0000FFFF;
x1 &= (uint64_t)0x0000FFFF0000FFFF;
x2 &= (uint64_t)0x0000FFFF0000FFFF;
x3 &= (uint64_t)0x0000FFFF0000FFFF;
x0 |= (x0 << 8);
x1 |= (x1 << 8);
x2 |= (x2 << 8);
x3 |= (x3 << 8);
x0 &= (uint64_t)0x00FF00FF00FF00FF;
x1 &= (uint64_t)0x00FF00FF00FF00FF;
x2 &= (uint64_t)0x00FF00FF00FF00FF;
x3 &= (uint64_t)0x00FF00FF00FF00FF;
*q0 = x0 | (x2 << 8);
*q1 = x1 | (x3 << 8);
}
static void br_aes_ct64_interleave_out(uint32_t *w, uint64_t q0, uint64_t q1) {
uint64_t x0, x1, x2, x3;
x0 = q0 & (uint64_t)0x00FF00FF00FF00FF;
x1 = q1 & (uint64_t)0x00FF00FF00FF00FF;
x2 = (q0 >> 8) & (uint64_t)0x00FF00FF00FF00FF;
x3 = (q1 >> 8) & (uint64_t)0x00FF00FF00FF00FF;
x0 |= (x0 >> 8);
x1 |= (x1 >> 8);
x2 |= (x2 >> 8);
x3 |= (x3 >> 8);
x0 &= (uint64_t)0x0000FFFF0000FFFF;
x1 &= (uint64_t)0x0000FFFF0000FFFF;
x2 &= (uint64_t)0x0000FFFF0000FFFF;
x3 &= (uint64_t)0x0000FFFF0000FFFF;
w[0] = (uint32_t)x0 | (uint32_t)(x0 >> 16);
w[1] = (uint32_t)x1 | (uint32_t)(x1 >> 16);
w[2] = (uint32_t)x2 | (uint32_t)(x2 >> 16);
w[3] = (uint32_t)x3 | (uint32_t)(x3 >> 16);
}
static const unsigned char Rcon[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
};
static uint32_t sub_word(uint32_t x) {
uint64_t q[8];
memset(q, 0, sizeof q);
q[0] = x;
br_aes_ct64_ortho(q);
br_aes_ct64_bitslice_Sbox(q);
br_aes_ct64_ortho(q);
return (uint32_t)q[0];
}
static void br_aes_ct64_keysched(uint64_t *comp_skey, const unsigned char *key, unsigned int key_len) {
unsigned int i, j, k, nk, nkf;
uint32_t tmp;
uint32_t skey[60];
unsigned nrounds = 10 + ((key_len - 16) >> 2);
nk = (key_len >> 2);
nkf = ((nrounds + 1) << 2);
br_range_dec32le(skey, (key_len >> 2), key);
tmp = skey[(key_len >> 2) - 1];
for (i = nk, j = 0, k = 0; i < nkf; i ++) {
if (j == 0) {
tmp = (tmp << 24) | (tmp >> 8);
tmp = sub_word(tmp) ^ Rcon[k];
} else if (nk > 6 && j == 4) {
tmp = sub_word(tmp);
}
tmp ^= skey[i - nk];
skey[i] = tmp;
if (++ j == nk) {
j = 0;
k ++;
}
}
for (i = 0, j = 0; i < nkf; i += 4, j += 2) {
uint64_t q[8];
br_aes_ct64_interleave_in(&q[0], &q[4], skey + i);
q[1] = q[0];
q[2] = q[0];
q[3] = q[0];
q[5] = q[4];
q[6] = q[4];
q[7] = q[4];
br_aes_ct64_ortho(q);
comp_skey[j + 0] =
(q[0] & (uint64_t)0x1111111111111111)
| (q[1] & (uint64_t)0x2222222222222222)
| (q[2] & (uint64_t)0x4444444444444444)
| (q[3] & (uint64_t)0x8888888888888888);
comp_skey[j + 1] =
(q[4] & (uint64_t)0x1111111111111111)
| (q[5] & (uint64_t)0x2222222222222222)
| (q[6] & (uint64_t)0x4444444444444444)
| (q[7] & (uint64_t)0x8888888888888888);
}
}
static void br_aes_ct64_skey_expand(uint64_t *skey, const uint64_t *comp_skey, unsigned int nrounds) {
unsigned u, v, n;
n = (nrounds + 1) << 1;
for (u = 0, v = 0; u < n; u ++, v += 4) {
uint64_t x0, x1, x2, x3;
x0 = x1 = x2 = x3 = comp_skey[u];
x0 &= (uint64_t)0x1111111111111111;
x1 &= (uint64_t)0x2222222222222222;
x2 &= (uint64_t)0x4444444444444444;
x3 &= (uint64_t)0x8888888888888888;
x1 >>= 1;
x2 >>= 2;
x3 >>= 3;
skey[v + 0] = (x0 << 4) - x0;
skey[v + 1] = (x1 << 4) - x1;
skey[v + 2] = (x2 << 4) - x2;
skey[v + 3] = (x3 << 4) - x3;
}
}
static inline void add_round_key(uint64_t *q, const uint64_t *sk) {
q[0] ^= sk[0];
q[1] ^= sk[1];
q[2] ^= sk[2];
q[3] ^= sk[3];
q[4] ^= sk[4];
q[5] ^= sk[5];
q[6] ^= sk[6];
q[7] ^= sk[7];
}
static inline void shift_rows(uint64_t *q) {
int i;
for (i = 0; i < 8; i ++) {
uint64_t x;
x = q[i];
q[i] = (x & (uint64_t)0x000000000000FFFF)
| ((x & (uint64_t)0x00000000FFF00000) >> 4)
| ((x & (uint64_t)0x00000000000F0000) << 12)
| ((x & (uint64_t)0x0000FF0000000000) >> 8)
| ((x & (uint64_t)0x000000FF00000000) << 8)
| ((x & (uint64_t)0xF000000000000000) >> 12)
| ((x & (uint64_t)0x0FFF000000000000) << 4);
}
}
static inline uint64_t rotr32(uint64_t x) {
return (x << 32) | (x >> 32);
}
static inline void mix_columns(uint64_t *q) {
uint64_t q0, q1, q2, q3, q4, q5, q6, q7;
uint64_t r0, r1, r2, r3, r4, r5, r6, r7;
q0 = q[0];
q1 = q[1];
q2 = q[2];
q3 = q[3];
q4 = q[4];
q5 = q[5];
q6 = q[6];
q7 = q[7];
r0 = (q0 >> 16) | (q0 << 48);
r1 = (q1 >> 16) | (q1 << 48);
r2 = (q2 >> 16) | (q2 << 48);
r3 = (q3 >> 16) | (q3 << 48);
r4 = (q4 >> 16) | (q4 << 48);
r5 = (q5 >> 16) | (q5 << 48);
r6 = (q6 >> 16) | (q6 << 48);
r7 = (q7 >> 16) | (q7 << 48);
q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0);
q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1);
q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2);
q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3);
q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4);
q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5);
q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6);
q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7);
}
static void inc4_be(uint32_t *x) {
uint32_t t = br_swap32(*x) + 4;
*x = br_swap32(t);
}
static void aes_ecb4x(unsigned char out[64], const uint32_t ivw[16], const uint64_t *sk_exp, unsigned int nrounds) {
uint32_t w[16];
uint64_t q[8];
unsigned int i;
memcpy(w, ivw, sizeof(w));
for (i = 0; i < 4; i++) {
br_aes_ct64_interleave_in(&q[i], &q[i + 4], w + (i << 2));
}
br_aes_ct64_ortho(q);
add_round_key(q, sk_exp);
for (i = 1; i < nrounds; i++) {
br_aes_ct64_bitslice_Sbox(q);
shift_rows(q);
mix_columns(q);
add_round_key(q, sk_exp + (i << 3));
}
br_aes_ct64_bitslice_Sbox(q);
shift_rows(q);
add_round_key(q, sk_exp + 8 * nrounds);
br_aes_ct64_ortho(q);
for (i = 0; i < 4; i ++) {
br_aes_ct64_interleave_out(w + (i << 2), q[i], q[i + 4]);
}
br_range_enc32le(out, w, 16);
}
static void aes_ctr4x(unsigned char out[64], uint32_t ivw[16], const uint64_t *sk_exp, unsigned int nrounds) {
aes_ecb4x(out, ivw, sk_exp, nrounds);
/* Increase counter for next 4 blocks */
inc4_be(ivw + 3);
inc4_be(ivw + 7);
inc4_be(ivw + 11);
inc4_be(ivw + 15);
}
static void aes_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const uint64_t *rkeys, unsigned int nrounds) {
uint32_t blocks[16];
unsigned char t[64];
while (nblocks >= 4) {
br_range_dec32le(blocks, 16, in);
aes_ecb4x(out, blocks, rkeys, nrounds);
nblocks -= 4;
in += 64;
out += 64;
}
if (nblocks) {
br_range_dec32le(blocks, nblocks * 4, in);
aes_ecb4x(t, blocks, rkeys, nrounds);
memcpy(out, t, nblocks * 16);
}
}
static void aes_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const uint64_t *rkeys, unsigned int nrounds) {
uint32_t ivw[16];
size_t i;
uint32_t cc = 0;
br_range_dec32le(ivw, 3, iv);
memcpy(ivw + 4, ivw, 3 * sizeof(uint32_t));
memcpy(ivw + 8, ivw, 3 * sizeof(uint32_t));
memcpy(ivw + 12, ivw, 3 * sizeof(uint32_t));
ivw[ 3] = br_swap32(cc);
ivw[ 7] = br_swap32(cc + 1);
ivw[11] = br_swap32(cc + 2);
ivw[15] = br_swap32(cc + 3);
while (outlen > 64) {
aes_ctr4x(out, ivw, rkeys, nrounds);
out += 64;
outlen -= 64;
}
if (outlen > 0) {
unsigned char tmp[64];
aes_ctr4x(tmp, ivw, rkeys, nrounds);
for (i = 0; i < outlen; i++) {
out[i] = tmp[i];
}
}
}
void aes128_ecb_keyexp(aes128ctx *r, const unsigned char *key) {
uint64_t skey[22];
r->sk_exp = malloc(sizeof(uint64_t) * PQC_AES128_STATESIZE);
if (r->sk_exp == NULL) {
exit(111);
}
br_aes_ct64_keysched(skey, key, 16);
br_aes_ct64_skey_expand(r->sk_exp, skey, 10);
}
void aes128_ctr_keyexp(aes128ctx *r, const unsigned char *key) {
aes128_ecb_keyexp(r, key);
}
void aes192_ecb_keyexp(aes192ctx *r, const unsigned char *key) {
uint64_t skey[26];
r->sk_exp = malloc(sizeof(uint64_t) * PQC_AES192_STATESIZE);
if (r->sk_exp == NULL) {
exit(111);
}
br_aes_ct64_keysched(skey, key, 24);
br_aes_ct64_skey_expand(r->sk_exp, skey, 12);
}
void aes192_ctr_keyexp(aes192ctx *r, const unsigned char *key) {
aes192_ecb_keyexp(r, key);
}
void aes256_ecb_keyexp(aes256ctx *r, const unsigned char *key) {
uint64_t skey[30];
r->sk_exp = malloc(sizeof(uint64_t) * PQC_AES256_STATESIZE);
if (r->sk_exp == NULL) {
exit(111);
}
br_aes_ct64_keysched(skey, key, 32);
br_aes_ct64_skey_expand(r->sk_exp, skey, 14);
}
void aes256_ctr_keyexp(aes256ctx *r, const unsigned char *key) {
aes256_ecb_keyexp(r, key);
}
void aes128_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const aes128ctx *ctx) {
aes_ecb(out, in, nblocks, ctx->sk_exp, 10);
}
void aes128_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const aes128ctx *ctx) {
aes_ctr(out, outlen, iv, ctx->sk_exp, 10);
}
void aes192_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const aes192ctx *ctx) {
aes_ecb(out, in, nblocks, ctx->sk_exp, 12);
}
void aes192_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const aes192ctx *ctx) {
aes_ctr(out, outlen, iv, ctx->sk_exp, 12);
}
void aes256_ecb(unsigned char *out, const unsigned char *in, size_t nblocks, const aes256ctx *ctx) {
aes_ecb(out, in, nblocks, ctx->sk_exp, 14);
}
void aes256_ctr(unsigned char *out, size_t outlen, const unsigned char *iv, const aes256ctx *ctx) {
aes_ctr(out, outlen, iv, ctx->sk_exp, 14);
}
void aes128_ctx_release(aes128ctx *r) {
free(r->sk_exp);
}
void aes192_ctx_release(aes192ctx *r) {
free(r->sk_exp);
}
void aes256_ctx_release(aes256ctx *r) {
free(r->sk_exp);
}
int AES_128_CTR(unsigned char *output, size_t outputByteLen,
const unsigned char *input, size_t inputByteLen) {
aes128ctx ctx;
unsigned char iv[16] = { 0 };
aes128_ctr_keyexp(&ctx, input);
aes128_ctr(output, outputByteLen, iv, &ctx);
aes128_ctx_release(&ctx);
return (int)outputByteLen;
}
void AES_256_ECB(const uint8_t *input, const unsigned char *key, unsigned char *output) {
aes256ctx ctx;
aes256_ecb_keyexp(&ctx, key);
aes256_ecb(output, input, 1, &ctx);
aes256_ctx_release(&ctx);
}

1102
src/common/generic/fips202.c Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,23 @@
// SPDX-License-Identifier: Apache-2.0
#ifndef AES_H
#define AES_H
#include <stddef.h>
#include <stdint.h>
void AES_256_ECB(const uint8_t *input, const uint8_t *key, uint8_t *output);
#define AES_ECB_encrypt AES_256_ECB
#ifdef ENABLE_AESNI
int AES_128_CTR_NI(unsigned char *output, size_t outputByteLen,
const unsigned char *input, size_t inputByteLen);
int AES_128_CTR_4R_NI(unsigned char *output, size_t outputByteLen,
const unsigned char *input, size_t inputByteLen);
#define AES_128_CTR AES_128_CTR_NI
#else
int AES_128_CTR(unsigned char *output, size_t outputByteLen,
const unsigned char *input, size_t inputByteLen);
#endif
#endif

View File

@@ -0,0 +1,63 @@
// SPDX-License-Identifier: Apache-2.0
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <inttypes.h>
#if defined(TARGET_OS_UNIX) && (defined(TARGET_ARM) || defined(TARGET_ARM64) || defined(TARGET_OTHER))
#include <time.h>
#endif
#if (defined(TARGET_ARM) || defined(TARGET_ARM64) || defined(TARGET_S390X) || defined(TARGET_OTHER))
#define print_bench_unit printf("nsec\n");
#else
#define print_bench_unit printf("cycles\n");
#endif
#if (defined(TARGET_ARM) || defined(TARGET_ARM64) || defined(TARGET_S390X))
#define BENCH_UNITS "nsec"
#else
#define BENCH_UNITS "cycles"
#endif
static inline int64_t cpucycles(void) {
#if (defined(TARGET_AMD64) || defined(TARGET_X86))
unsigned int hi, lo;
asm volatile ("rdtsc" : "=a" (lo), "=d"(hi));
return ((int64_t) lo) | (((int64_t) hi) << 32);
#elif (defined(TARGET_S390X))
uint64_t tod;
asm volatile("stckf %0\n" : "=Q" (tod) : : "cc");
return (tod * 1000 / 4096);
#else
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return (int64_t)(time.tv_sec * 1e9 + time.tv_nsec);
#endif
}
static inline int cmpfunc (const void *a, const void *b) {
return ( *(uint64_t *)a - * (uint64_t *)b );
}
#define BENCH_CODE_1(r) \
cycles = 0; \
for (i = 0; i < (r); ++i) { \
cycles1 = cpucycles();
#define BENCH_CODE_2(name, csv) \
cycles2 = cpucycles(); \
if(i < LIST_SIZE) \
cycles_list[i] = (cycles2 - cycles1);\
cycles = cycles + (cycles2 - cycles1); \
} \
qsort(cycles_list, (runs < LIST_SIZE)? runs : LIST_SIZE, sizeof(uint64_t), cmpfunc);\
if (csv) \
printf("%2" PRId64 ",", cycles_list[(runs < LIST_SIZE)? runs/2 : LIST_SIZE/2]); \
else { \
printf(" %-20s-> median: %2" PRId64 ", average: %2" PRId64 " ", name, \
cycles_list[(runs < LIST_SIZE)? runs/2 : LIST_SIZE/2], (cycles / runs)); \
printf("%s\n", BENCH_UNITS); \
}

View File

@@ -0,0 +1,11 @@
// SPDX-License-Identifier: Apache-2.0
#ifndef FIPS202_H
#define FIPS202_H
#include <stddef.h>
int SHAKE128(unsigned char *output, size_t outputByteLen, const unsigned char *input, size_t inputByteLen);
int SHAKE256(unsigned char *output, size_t outputByteLen, const unsigned char *input, size_t inputByteLen);
#endif

View File

@@ -0,0 +1,33 @@
#ifndef TUTIL_H
#define TUTIL_H
#include <stddef.h>
#include <stdint.h>
#if defined(__GNUC__) || defined(__clang__)
#define BSWAP32(i) __builtin_bswap32((i))
#define BSWAP64(i) __builtin_bswap64((i))
#else
#define BSWAP32(i) ((((i) >> 24) & 0xff) | (((i) >> 8) & 0xff00) | (((i) & 0xff00) << 8) | ((i) << 24))
#define BSWAP64(i) ((BSWAP32((i) >> 32) & 0xffffffff) | (BSWAP32(i) << 32)
#endif
#if defined(RADIX_64)
#define digit_t uint64_t
#define sdigit_t int64_t
#define DIGIT_LEN 8
#define RADIX 64
#define LOG2RADIX 6
#define BSWAP_DIGIT(i) BSWAP64(i)
#elif defined(RADIX_32)
#define digit_t uint32_t
#define sdigit_t int32_t
#define DIGIT_LEN 4
#define RADIX 32
#define LOG2RADIX 5
#define BSWAP_DIGIT(i) BSWAP32(i)
#else
#error "Radix must be 32bit or 64 bit"
#endif
#endif

18
src/common/generic/mem.c Normal file
View File

@@ -0,0 +1,18 @@
// SPDX-License-Identifier: Apache-2.0
#include <string.h>
#include <stdlib.h>
void sqisign_secure_free(void *mem, size_t size) {
if (mem) {
typedef void *(*memset_t)(void *, int, size_t);
static volatile memset_t memset_func = memset;
memset_func(mem, 0, size);
free(mem);
}
}
void sqisign_secure_clear(void *mem, size_t size) {
typedef void *(*memset_t)(void *, int, size_t);
static volatile memset_t memset_func = memset;
memset_func(mem, 0, size);
}

View File

@@ -0,0 +1,140 @@
// SPDX-License-Identifier: Apache-2.0 and Unknown
//
/*
NIST-developed software is provided by NIST as a public service. You may use, copy, and distribute copies of the software in any medium, provided that you keep intact this entire notice. You may improve, modify, and create derivative works of the software or any portion of the software, and you may copy and distribute such modifications or works. Modified works should carry a notice stating that you changed the software and should note the date and nature of any such change. Please explicitly acknowledge the National Institute of Standards and Technology as the source of the software.
NIST-developed software is expressly provided "AS IS." NIST MAKES NO WARRANTY OF ANY KIND, EXPRESS, IMPLIED, IN FACT, OR ARISING BY OPERATION OF LAW, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, AND DATA ACCURACY. NIST NEITHER REPRESENTS NOR WARRANTS THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT ANY DEFECTS WILL BE CORRECTED. NIST DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF THE SOFTWARE OR THE RESULTS THEREOF, INCLUDING BUT NOT LIMITED TO THE CORRECTNESS, ACCURACY, RELIABILITY, OR USEFULNESS OF THE SOFTWARE.
You are solely responsible for determining the appropriateness of using and distributing the software and you assume all risks associated with its use, including but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or loss of data, programs or equipment, and the unavailability or interruption of operation. This software is not intended to be used in any situation where a failure could cause risk of injury or damage to property. The software developed by NIST employees is not subject to copyright protection within the United States.
*/
#include <string.h>
#include <aes.h>
#ifdef ENABLE_CT_TESTING
#include <valgrind/memcheck.h>
#endif
#define RNG_SUCCESS 0
#define RNG_BAD_MAXLEN -1
#define RNG_BAD_OUTBUF -2
#define RNG_BAD_REQ_LEN -3
static __inline void AES256_ECB(unsigned char *key, unsigned char *ctr, unsigned char *buffer) {
AES_ECB_encrypt(ctr, key, buffer);
}
typedef struct {
unsigned char buffer[16];
int buffer_pos;
unsigned long length_remaining;
unsigned char key[32];
unsigned char ctr[16];
} AES_XOF_struct;
typedef struct {
unsigned char Key[32];
unsigned char V[16];
int reseed_counter;
} AES256_CTR_DRBG_struct;
void
AES256_CTR_DRBG_Update(unsigned char *provided_data,
unsigned char *Key,
unsigned char *V);
AES256_CTR_DRBG_struct DRBG_ctx;
static void
randombytes_init_nist(unsigned char *entropy_input,
unsigned char *personalization_string,
int security_strength) {
unsigned char seed_material[48];
(void)security_strength; // Unused parameter
memcpy(seed_material, entropy_input, 48);
if (personalization_string)
for (int i = 0; i < 48; i++) {
seed_material[i] ^= personalization_string[i];
}
memset(DRBG_ctx.Key, 0x00, 32);
memset(DRBG_ctx.V, 0x00, 16);
AES256_CTR_DRBG_Update(seed_material, DRBG_ctx.Key, DRBG_ctx.V);
DRBG_ctx.reseed_counter = 1;
}
static int
randombytes_nist(unsigned char *x, size_t xlen) {
unsigned char block[16];
size_t i = 0;
while ( xlen > 0 ) {
//increment V
for (int j = 15; j >= 0; j--) {
if ( DRBG_ctx.V[j] == 0xff ) {
DRBG_ctx.V[j] = 0x00;
} else {
DRBG_ctx.V[j]++;
break;
}
}
AES256_ECB(DRBG_ctx.Key, DRBG_ctx.V, block);
if ( xlen > 15 ) {
memcpy(x + i, block, 16);
i += 16;
xlen -= 16;
} else {
memcpy(x + i, block, xlen);
i += xlen;
xlen = 0;
}
}
AES256_CTR_DRBG_Update(NULL, DRBG_ctx.Key, DRBG_ctx.V);
DRBG_ctx.reseed_counter++;
return 0;
}
void
AES256_CTR_DRBG_Update(unsigned char *provided_data,
unsigned char *Key,
unsigned char *V) {
unsigned char temp[48];
for (int i = 0; i < 3; i++) {
//increment V
for (int j = 15; j >= 0; j--) {
if ( V[j] == 0xff ) {
V[j] = 0x00;
} else {
V[j]++;
break;
}
}
AES256_ECB(Key, V, temp + 16 * i);
}
if ( provided_data != NULL )
for (int i = 0; i < 48; i++) {
temp[i] ^= provided_data[i];
}
memcpy(Key, temp, 32);
memcpy(V, temp + 32, 16);
}
int randombytes(unsigned char *random_array, unsigned long long nbytes) {
int ret = randombytes_nist(random_array, nbytes);
#ifdef ENABLE_CT_TESTING
VALGRIND_MAKE_MEM_UNDEFINED(random_array, ret);
#endif
return ret;
}
void
randombytes_init(unsigned char *entropy_input,
unsigned char *personalization_string,
int security_strength) {
return randombytes_init_nist(entropy_input, personalization_string, security_strength);
}

View File

@@ -0,0 +1,396 @@
// SPDX-License-Identifier: MIT
/*
The MIT License
Copyright (c) 2017 Daan Sprenkels <hello@dsprenkels.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifdef ENABLE_CT_TESTING
#include <valgrind/memcheck.h>
#endif
// In the case that are compiling on linux, we need to define _GNU_SOURCE
// *before* randombytes.h is included. Otherwise SYS_getrandom will not be
// declared.
#if defined(__linux__) || defined(__GNU__)
# define _GNU_SOURCE
#endif /* defined(__linux__) || defined(__GNU__) */
#if defined(_WIN32)
/* Windows */
# include <windows.h>
# include <wincrypt.h> /* CryptAcquireContext, CryptGenRandom */
#endif /* defined(_WIN32) */
/* wasi */
#if defined(__wasi__)
#include <stdlib.h>
#endif
/* kFreeBSD */
#if defined(__FreeBSD_kernel__) && defined(__GLIBC__)
# define GNU_KFREEBSD
#endif
#if defined(__linux__) || defined(__GNU__) || defined(GNU_KFREEBSD)
/* Linux */
// We would need to include <linux/random.h>, but not every target has access
// to the linux headers. We only need RNDGETENTCNT, so we instead inline it.
// RNDGETENTCNT is originally defined in `include/uapi/linux/random.h` in the
// linux repo.
# define RNDGETENTCNT 0x80045200
# include <assert.h>
# include <errno.h>
# include <fcntl.h>
# include <poll.h>
# include <stdint.h>
# include <stdio.h>
# include <sys/ioctl.h>
# if (defined(__linux__) || defined(__GNU__)) && defined(__GLIBC__) && ((__GLIBC__ > 2) || (__GLIBC_MINOR__ > 24))
# define USE_GLIBC
# include <sys/random.h>
# endif /* (defined(__linux__) || defined(__GNU__)) && defined(__GLIBC__) && ((__GLIBC__ > 2) || (__GLIBC_MINOR__ > 24)) */
# include <sys/stat.h>
# include <sys/syscall.h>
# include <sys/types.h>
# include <unistd.h>
// We need SSIZE_MAX as the maximum read len from /dev/urandom
# if !defined(SSIZE_MAX)
# define SSIZE_MAX (SIZE_MAX / 2 - 1)
# endif /* defined(SSIZE_MAX) */
#endif /* defined(__linux__) || defined(__GNU__) || defined(GNU_KFREEBSD) */
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
/* Dragonfly, FreeBSD, NetBSD, OpenBSD (has arc4random) */
# include <sys/param.h>
# if defined(BSD)
# include <stdlib.h>
# endif
/* GNU/Hurd defines BSD in sys/param.h which causes problems later */
# if defined(__GNU__)
# undef BSD
# endif
#endif
#if defined(__EMSCRIPTEN__)
# include <assert.h>
# include <emscripten.h>
# include <errno.h>
# include <stdbool.h>
#endif /* defined(__EMSCRIPTEN__) */
#if defined(_WIN32)
static int randombytes_win32_randombytes(void* buf, size_t n)
{
HCRYPTPROV ctx;
BOOL tmp;
DWORD to_read = 0;
const size_t MAX_DWORD = 0xFFFFFFFF;
tmp = CryptAcquireContext(&ctx, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT);
if (tmp == FALSE) return -1;
while (n > 0) {
to_read = (DWORD)(n < MAX_DWORD ? n : MAX_DWORD);
tmp = CryptGenRandom(ctx, to_read, (BYTE*) buf);
if (tmp == FALSE) return -1;
buf = ((char*)buf) + to_read;
n -= to_read;
}
tmp = CryptReleaseContext(ctx, 0);
if (tmp == FALSE) return -1;
return 0;
}
#endif /* defined(_WIN32) */
#if defined(__wasi__)
static int randombytes_wasi_randombytes(void *buf, size_t n) {
arc4random_buf(buf, n);
return 0;
}
#endif /* defined(__wasi__) */
#if (defined(__linux__) || defined(__GNU__)) && (defined(USE_GLIBC) || defined(SYS_getrandom))
# if defined(USE_GLIBC)
// getrandom is declared in glibc.
# elif defined(SYS_getrandom)
static ssize_t getrandom(void *buf, size_t buflen, unsigned int flags) {
return syscall(SYS_getrandom, buf, buflen, flags);
}
# endif
static int randombytes_linux_randombytes_getrandom(void *buf, size_t n)
{
/* I have thought about using a separate PRF, seeded by getrandom, but
* it turns out that the performance of getrandom is good enough
* (250 MB/s on my laptop).
*/
size_t offset = 0, chunk;
int ret;
while (n > 0) {
/* getrandom does not allow chunks larger than 33554431 */
chunk = n <= 33554431 ? n : 33554431;
do {
ret = getrandom((char *)buf + offset, chunk, 0);
} while (ret == -1 && errno == EINTR);
if (ret < 0) return ret;
offset += ret;
n -= ret;
}
assert(n == 0);
return 0;
}
#endif /* (defined(__linux__) || defined(__GNU__)) && (defined(USE_GLIBC) || defined(SYS_getrandom)) */
#if (defined(__linux__) || defined(GNU_KFREEBSD)) && !defined(SYS_getrandom)
# if defined(__linux__)
static int randombytes_linux_read_entropy_ioctl(int device, int *entropy)
{
return ioctl(device, RNDGETENTCNT, entropy);
}
static int randombytes_linux_read_entropy_proc(FILE *stream, int *entropy)
{
int retcode;
do {
rewind(stream);
retcode = fscanf(stream, "%d", entropy);
} while (retcode != 1 && errno == EINTR);
if (retcode != 1) {
return -1;
}
return 0;
}
static int randombytes_linux_wait_for_entropy(int device)
{
/* We will block on /dev/random, because any increase in the OS' entropy
* level will unblock the request. I use poll here (as does libsodium),
* because we don't *actually* want to read from the device. */
enum { IOCTL, PROC } strategy = IOCTL;
const int bits = 128;
struct pollfd pfd;
int fd;
FILE *proc_file;
int retcode, retcode_error = 0; // Used as return codes throughout this function
int entropy = 0;
/* If the device has enough entropy already, we will want to return early */
retcode = randombytes_linux_read_entropy_ioctl(device, &entropy);
// printf("errno: %d (%s)\n", errno, strerror(errno));
if (retcode != 0 && (errno == ENOTTY || errno == ENOSYS)) {
// The ioctl call on /dev/urandom has failed due to a
// - ENOTTY (unsupported action), or
// - ENOSYS (invalid ioctl; this happens on MIPS, see #22).
//
// We will fall back to reading from
// `/proc/sys/kernel/random/entropy_avail`. This less ideal,
// because it allocates a file descriptor, and it may not work
// in a chroot. But at this point it seems we have no better
// options left.
strategy = PROC;
// Open the entropy count file
proc_file = fopen("/proc/sys/kernel/random/entropy_avail", "r");
if (proc_file == NULL) {
return -1;
}
} else if (retcode != 0) {
// Unrecoverable ioctl error
return -1;
}
if (entropy >= bits) {
return 0;
}
do {
fd = open("/dev/random", O_RDONLY);
} while (fd == -1 && errno == EINTR); /* EAGAIN will not occur */
if (fd == -1) {
/* Unrecoverable IO error */
return -1;
}
pfd.fd = fd;
pfd.events = POLLIN;
for (;;) {
retcode = poll(&pfd, 1, -1);
if (retcode == -1 && (errno == EINTR || errno == EAGAIN)) {
continue;
} else if (retcode == 1) {
if (strategy == IOCTL) {
retcode = randombytes_linux_read_entropy_ioctl(device, &entropy);
} else if (strategy == PROC) {
retcode = randombytes_linux_read_entropy_proc(proc_file, &entropy);
} else {
return -1; // Unreachable
}
if (retcode != 0) {
// Unrecoverable I/O error
retcode_error = retcode;
break;
}
if (entropy >= bits) {
break;
}
} else {
// Unreachable: poll() should only return -1 or 1
retcode_error = -1;
break;
}
}
do {
retcode = close(fd);
} while (retcode == -1 && errno == EINTR);
if (strategy == PROC) {
do {
retcode = fclose(proc_file);
} while (retcode == -1 && errno == EINTR);
}
if (retcode_error != 0) {
return retcode_error;
}
return retcode;
}
# endif /* defined(__linux__) */
static int randombytes_linux_randombytes_urandom(void *buf, size_t n)
{
int fd;
size_t offset = 0, count;
ssize_t tmp;
do {
fd = open("/dev/urandom", O_RDONLY);
} while (fd == -1 && errno == EINTR);
if (fd == -1) return -1;
# if defined(__linux__)
if (randombytes_linux_wait_for_entropy(fd) == -1) return -1;
# endif
while (n > 0) {
count = n <= SSIZE_MAX ? n : SSIZE_MAX;
tmp = read(fd, (char *)buf + offset, count);
if (tmp == -1 && (errno == EAGAIN || errno == EINTR)) {
continue;
}
if (tmp == -1) return -1; /* Unrecoverable IO error */
offset += tmp;
n -= tmp;
}
close(fd);
assert(n == 0);
return 0;
}
#endif /* defined(__linux__) && !defined(SYS_getrandom) */
#if defined(BSD)
static int randombytes_bsd_randombytes(void *buf, size_t n)
{
arc4random_buf(buf, n);
return 0;
}
#endif /* defined(BSD) */
#if defined(__EMSCRIPTEN__)
static int randombytes_js_randombytes_nodejs(void *buf, size_t n) {
const int ret = EM_ASM_INT({
var crypto;
try {
crypto = require('crypto');
} catch (error) {
return -2;
}
try {
writeArrayToMemory(crypto.randomBytes($1), $0);
return 0;
} catch (error) {
return -1;
}
}, buf, n);
switch (ret) {
case 0:
return 0;
case -1:
errno = EINVAL;
return -1;
case -2:
errno = ENOSYS;
return -1;
}
assert(false); // Unreachable
}
#endif /* defined(__EMSCRIPTEN__) */
static int randombytes_select(void *buf, size_t n)
{
#if defined(__EMSCRIPTEN__)
return randombytes_js_randombytes_nodejs(buf, n);
#elif defined(__linux__) || defined(__GNU__) || defined(GNU_KFREEBSD)
# if defined(USE_GLIBC)
/* Use getrandom system call */
return randombytes_linux_randombytes_getrandom(buf, n);
# elif defined(SYS_getrandom)
/* Use getrandom system call */
return randombytes_linux_randombytes_getrandom(buf, n);
# else
/* When we have enough entropy, we can read from /dev/urandom */
return randombytes_linux_randombytes_urandom(buf, n);
# endif
#elif defined(BSD)
/* Use arc4random system call */
return randombytes_bsd_randombytes(buf, n);
#elif defined(_WIN32)
/* Use windows API */
return randombytes_win32_randombytes(buf, n);
#elif defined(__wasi__)
/* Use WASI */
return randombytes_wasi_randombytes(buf, n);
#else
# error "randombytes(...) is not supported on this platform"
#endif
}
int randombytes(unsigned char *x, unsigned long long xlen) {
int ret = randombytes_select(x, (size_t) xlen);
#ifdef ENABLE_CT_TESTING
VALGRIND_MAKE_MEM_UNDEFINED(x, xlen);
#endif
return ret;
}
void randombytes_init(unsigned char *entropy_input,
unsigned char *personalization_string,
int security_strength) {
(void) entropy_input;
(void) personalization_string;
(void) security_strength;
}